3.979 \(\int \frac{1}{x^2 \sqrt{a+b x^2-c x^4}} \, dx\)

Optimal. Leaf size=408 \[ -\frac{\left (b-\sqrt{4 a c+b^2}\right ) \sqrt{\sqrt{4 a c+b^2}+b} \sqrt{1-\frac{2 c x^2}{b-\sqrt{4 a c+b^2}}} \sqrt{1-\frac{2 c x^2}{\sqrt{4 a c+b^2}+b}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{4 a c+b^2}+b}}\right ),\frac{\sqrt{4 a c+b^2}+b}{b-\sqrt{4 a c+b^2}}\right )}{2 \sqrt{2} a \sqrt{c} \sqrt{a+b x^2-c x^4}}+\frac{\left (b-\sqrt{4 a c+b^2}\right ) \sqrt{\sqrt{4 a c+b^2}+b} \sqrt{1-\frac{2 c x^2}{b-\sqrt{4 a c+b^2}}} \sqrt{1-\frac{2 c x^2}{\sqrt{4 a c+b^2}+b}} E\left (\sin ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2+4 a c}}}\right )|\frac{b+\sqrt{b^2+4 a c}}{b-\sqrt{b^2+4 a c}}\right )}{2 \sqrt{2} a \sqrt{c} \sqrt{a+b x^2-c x^4}}-\frac{\sqrt{a+b x^2-c x^4}}{a x} \]

[Out]

-(Sqrt[a + b*x^2 - c*x^4]/(a*x)) + ((b - Sqrt[b^2 + 4*a*c])*Sqrt[b + Sqrt[b^2 + 4*a*c]]*Sqrt[1 - (2*c*x^2)/(b
- Sqrt[b^2 + 4*a*c])]*Sqrt[1 - (2*c*x^2)/(b + Sqrt[b^2 + 4*a*c])]*EllipticE[ArcSin[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b
+ Sqrt[b^2 + 4*a*c]]], (b + Sqrt[b^2 + 4*a*c])/(b - Sqrt[b^2 + 4*a*c])])/(2*Sqrt[2]*a*Sqrt[c]*Sqrt[a + b*x^2 -
 c*x^4]) - ((b - Sqrt[b^2 + 4*a*c])*Sqrt[b + Sqrt[b^2 + 4*a*c]]*Sqrt[1 - (2*c*x^2)/(b - Sqrt[b^2 + 4*a*c])]*Sq
rt[1 - (2*c*x^2)/(b + Sqrt[b^2 + 4*a*c])]*EllipticF[ArcSin[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 + 4*a*c]]], (
b + Sqrt[b^2 + 4*a*c])/(b - Sqrt[b^2 + 4*a*c])])/(2*Sqrt[2]*a*Sqrt[c]*Sqrt[a + b*x^2 - c*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.331777, antiderivative size = 408, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {1123, 12, 1140, 493, 424, 419} \[ -\frac{\left (b-\sqrt{4 a c+b^2}\right ) \sqrt{\sqrt{4 a c+b^2}+b} \sqrt{1-\frac{2 c x^2}{b-\sqrt{4 a c+b^2}}} \sqrt{1-\frac{2 c x^2}{\sqrt{4 a c+b^2}+b}} F\left (\sin ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2+4 a c}}}\right )|\frac{b+\sqrt{b^2+4 a c}}{b-\sqrt{b^2+4 a c}}\right )}{2 \sqrt{2} a \sqrt{c} \sqrt{a+b x^2-c x^4}}+\frac{\left (b-\sqrt{4 a c+b^2}\right ) \sqrt{\sqrt{4 a c+b^2}+b} \sqrt{1-\frac{2 c x^2}{b-\sqrt{4 a c+b^2}}} \sqrt{1-\frac{2 c x^2}{\sqrt{4 a c+b^2}+b}} E\left (\sin ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2+4 a c}}}\right )|\frac{b+\sqrt{b^2+4 a c}}{b-\sqrt{b^2+4 a c}}\right )}{2 \sqrt{2} a \sqrt{c} \sqrt{a+b x^2-c x^4}}-\frac{\sqrt{a+b x^2-c x^4}}{a x} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^2*Sqrt[a + b*x^2 - c*x^4]),x]

[Out]

-(Sqrt[a + b*x^2 - c*x^4]/(a*x)) + ((b - Sqrt[b^2 + 4*a*c])*Sqrt[b + Sqrt[b^2 + 4*a*c]]*Sqrt[1 - (2*c*x^2)/(b
- Sqrt[b^2 + 4*a*c])]*Sqrt[1 - (2*c*x^2)/(b + Sqrt[b^2 + 4*a*c])]*EllipticE[ArcSin[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b
+ Sqrt[b^2 + 4*a*c]]], (b + Sqrt[b^2 + 4*a*c])/(b - Sqrt[b^2 + 4*a*c])])/(2*Sqrt[2]*a*Sqrt[c]*Sqrt[a + b*x^2 -
 c*x^4]) - ((b - Sqrt[b^2 + 4*a*c])*Sqrt[b + Sqrt[b^2 + 4*a*c]]*Sqrt[1 - (2*c*x^2)/(b - Sqrt[b^2 + 4*a*c])]*Sq
rt[1 - (2*c*x^2)/(b + Sqrt[b^2 + 4*a*c])]*EllipticF[ArcSin[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 + 4*a*c]]], (
b + Sqrt[b^2 + 4*a*c])/(b - Sqrt[b^2 + 4*a*c])])/(2*Sqrt[2]*a*Sqrt[c]*Sqrt[a + b*x^2 - c*x^4])

Rule 1123

Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*x^2 +
 c*x^4)^(p + 1))/(a*d*(m + 1)), x] - Dist[1/(a*d^2*(m + 1)), Int[(d*x)^(m + 2)*(b*(m + 2*p + 3) + c*(m + 4*p +
 5)*x^2)*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[m, -1] && In
tegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 1140

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[(Sqrt[1
+ (2*c*x^2)/(b - q)]*Sqrt[1 + (2*c*x^2)/(b + q)])/Sqrt[a + b*x^2 + c*x^4], Int[x^2/(Sqrt[1 + (2*c*x^2)/(b - q)
]*Sqrt[1 + (2*c*x^2)/(b + q)]), x], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && NegQ[c/a]

Rule 493

Int[(x_)^(n_)/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[1/b, Int[Sqrt[a +
 b*x^n]/Sqrt[c + d*x^n], x], x] - Dist[a/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b, c,
 d}, x] && NeQ[b*c - a*d, 0] && (EqQ[n, 2] || EqQ[n, 4]) &&  !(EqQ[n, 2] && SimplerSqrtQ[-(b/a), -(d/c)])

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{1}{x^2 \sqrt{a+b x^2-c x^4}} \, dx &=-\frac{\sqrt{a+b x^2-c x^4}}{a x}-\frac{\int \frac{c x^2}{\sqrt{a+b x^2-c x^4}} \, dx}{a}\\ &=-\frac{\sqrt{a+b x^2-c x^4}}{a x}-\frac{c \int \frac{x^2}{\sqrt{a+b x^2-c x^4}} \, dx}{a}\\ &=-\frac{\sqrt{a+b x^2-c x^4}}{a x}-\frac{\left (c \sqrt{1-\frac{2 c x^2}{b-\sqrt{b^2+4 a c}}} \sqrt{1-\frac{2 c x^2}{b+\sqrt{b^2+4 a c}}}\right ) \int \frac{x^2}{\sqrt{1-\frac{2 c x^2}{b-\sqrt{b^2+4 a c}}} \sqrt{1-\frac{2 c x^2}{b+\sqrt{b^2+4 a c}}}} \, dx}{a \sqrt{a+b x^2-c x^4}}\\ &=-\frac{\sqrt{a+b x^2-c x^4}}{a x}-\frac{\left (\left (b-\sqrt{b^2+4 a c}\right ) \sqrt{1-\frac{2 c x^2}{b-\sqrt{b^2+4 a c}}} \sqrt{1-\frac{2 c x^2}{b+\sqrt{b^2+4 a c}}}\right ) \int \frac{1}{\sqrt{1-\frac{2 c x^2}{b-\sqrt{b^2+4 a c}}} \sqrt{1-\frac{2 c x^2}{b+\sqrt{b^2+4 a c}}}} \, dx}{2 a \sqrt{a+b x^2-c x^4}}+\frac{\left (\left (b-\sqrt{b^2+4 a c}\right ) \sqrt{1-\frac{2 c x^2}{b-\sqrt{b^2+4 a c}}} \sqrt{1-\frac{2 c x^2}{b+\sqrt{b^2+4 a c}}}\right ) \int \frac{\sqrt{1-\frac{2 c x^2}{b-\sqrt{b^2+4 a c}}}}{\sqrt{1-\frac{2 c x^2}{b+\sqrt{b^2+4 a c}}}} \, dx}{2 a \sqrt{a+b x^2-c x^4}}\\ &=-\frac{\sqrt{a+b x^2-c x^4}}{a x}+\frac{\left (b-\sqrt{b^2+4 a c}\right ) \sqrt{b+\sqrt{b^2+4 a c}} \sqrt{1-\frac{2 c x^2}{b-\sqrt{b^2+4 a c}}} \sqrt{1-\frac{2 c x^2}{b+\sqrt{b^2+4 a c}}} E\left (\sin ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2+4 a c}}}\right )|\frac{b+\sqrt{b^2+4 a c}}{b-\sqrt{b^2+4 a c}}\right )}{2 \sqrt{2} a \sqrt{c} \sqrt{a+b x^2-c x^4}}-\frac{\left (b-\sqrt{b^2+4 a c}\right ) \sqrt{b+\sqrt{b^2+4 a c}} \sqrt{1-\frac{2 c x^2}{b-\sqrt{b^2+4 a c}}} \sqrt{1-\frac{2 c x^2}{b+\sqrt{b^2+4 a c}}} F\left (\sin ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2+4 a c}}}\right )|\frac{b+\sqrt{b^2+4 a c}}{b-\sqrt{b^2+4 a c}}\right )}{2 \sqrt{2} a \sqrt{c} \sqrt{a+b x^2-c x^4}}\\ \end{align*}

Mathematica [C]  time = 0.432216, size = 283, normalized size = 0.69 \[ \frac{\frac{i \left (\sqrt{4 a c+b^2}-b\right ) \sqrt{\frac{4 c x^2}{\sqrt{4 a c+b^2}-b}+2} \sqrt{1-\frac{2 c x^2}{\sqrt{4 a c+b^2}+b}} \left (E\left (i \sinh ^{-1}\left (\sqrt{2} \sqrt{-\frac{c}{b+\sqrt{b^2+4 a c}}} x\right )|\frac{b+\sqrt{b^2+4 a c}}{b-\sqrt{b^2+4 a c}}\right )-\text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{2} x \sqrt{-\frac{c}{\sqrt{4 a c+b^2}+b}}\right ),\frac{\sqrt{4 a c+b^2}+b}{b-\sqrt{4 a c+b^2}}\right )\right )}{\sqrt{-\frac{c}{\sqrt{4 a c+b^2}+b}}}-\frac{4 a}{x}-4 b x+4 c x^3}{4 a \sqrt{a+b x^2-c x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*Sqrt[a + b*x^2 - c*x^4]),x]

[Out]

((-4*a)/x - 4*b*x + 4*c*x^3 + (I*(-b + Sqrt[b^2 + 4*a*c])*Sqrt[2 + (4*c*x^2)/(-b + Sqrt[b^2 + 4*a*c])]*Sqrt[1
- (2*c*x^2)/(b + Sqrt[b^2 + 4*a*c])]*(EllipticE[I*ArcSinh[Sqrt[2]*Sqrt[-(c/(b + Sqrt[b^2 + 4*a*c]))]*x], (b +
Sqrt[b^2 + 4*a*c])/(b - Sqrt[b^2 + 4*a*c])] - EllipticF[I*ArcSinh[Sqrt[2]*Sqrt[-(c/(b + Sqrt[b^2 + 4*a*c]))]*x
], (b + Sqrt[b^2 + 4*a*c])/(b - Sqrt[b^2 + 4*a*c])]))/Sqrt[-(c/(b + Sqrt[b^2 + 4*a*c]))])/(4*a*Sqrt[a + b*x^2
- c*x^4])

________________________________________________________________________________________

Maple [A]  time = 0.225, size = 241, normalized size = 0.6 \begin{align*} -{\frac{1}{ax}\sqrt{-c{x}^{4}+b{x}^{2}+a}}+{\frac{c\sqrt{2}}{2}\sqrt{4-2\,{\frac{ \left ( -b+\sqrt{4\,ac+{b}^{2}} \right ){x}^{2}}{a}}}\sqrt{4+2\,{\frac{ \left ( b+\sqrt{4\,ac+{b}^{2}} \right ){x}^{2}}{a}}} \left ({\it EllipticF} \left ({\frac{x\sqrt{2}}{2}\sqrt{{\frac{1}{a} \left ( -b+\sqrt{4\,ac+{b}^{2}} \right ) }}},{\frac{1}{2}\sqrt{-4-2\,{\frac{b \left ( b+\sqrt{4\,ac+{b}^{2}} \right ) }{ac}}}} \right ) -{\it EllipticE} \left ({\frac{x\sqrt{2}}{2}\sqrt{{\frac{1}{a} \left ( -b+\sqrt{4\,ac+{b}^{2}} \right ) }}},{\frac{1}{2}\sqrt{-4-2\,{\frac{b \left ( b+\sqrt{4\,ac+{b}^{2}} \right ) }{ac}}}} \right ) \right ){\frac{1}{\sqrt{{\frac{1}{a} \left ( -b+\sqrt{4\,ac+{b}^{2}} \right ) }}}}{\frac{1}{\sqrt{-c{x}^{4}+b{x}^{2}+a}}} \left ( b+\sqrt{4\,ac+{b}^{2}} \right ) ^{-1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(-c*x^4+b*x^2+a)^(1/2),x)

[Out]

-(-c*x^4+b*x^2+a)^(1/2)/a/x+1/2*c*2^(1/2)/((-b+(4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(4*a*c+b^2)^(1/2))/a*x^2)^
(1/2)*(4+2*(b+(4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(-c*x^4+b*x^2+a)^(1/2)/(b+(4*a*c+b^2)^(1/2))*(EllipticF(1/2*x*2^
(1/2)*((-b+(4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4-2*b*(b+(4*a*c+b^2)^(1/2))/a/c)^(1/2))-EllipticE(1/2*x*2^(1/2)*(
(-b+(4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4-2*b*(b+(4*a*c+b^2)^(1/2))/a/c)^(1/2)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{-c x^{4} + b x^{2} + a} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(-c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(-c*x^4 + b*x^2 + a)*x^2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-c x^{4} + b x^{2} + a}}{c x^{6} - b x^{4} - a x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(-c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c*x^4 + b*x^2 + a)/(c*x^6 - b*x^4 - a*x^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x^{2} \sqrt{a + b x^{2} - c x^{4}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(-c*x**4+b*x**2+a)**(1/2),x)

[Out]

Integral(1/(x**2*sqrt(a + b*x**2 - c*x**4)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{-c x^{4} + b x^{2} + a} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(-c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(-c*x^4 + b*x^2 + a)*x^2), x)